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ABSTRACT : In the present paper we discuss some comparison theorems approximate
solutions, bounded and uniqueness in difference equations.
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INTRODUCTION : we consider successively some summation difference equations,
summation operator, approximate solutions, bounded and uniqueness as well as maximal

solutions in monotononic nondecreasing functions related to comparison theorems.

1. Comparison Theorems

Theorem 1.1.1 : Let GeC[I xI xR_,R,] and G(t,s,u) be monotone nondecreasing in u for

each (t, s) and m(t) <m,(t)+ ti G(t,s,m(s)),t>t,

S=t,

where me C[I,R,]. Suppose r(t) is the maximal solution of scalar summation equation
t-1

uy(t) =u(t) + > g(t,s,u(s)) (1.1.1)
s=t,

Existing on I then the inequality m(t,) <u,(t,) then

m(t) <r(t) (1.1.2)

Proof : Let u(t,€) be any solution of summation equation

W) =U, )+ e+ G(t,5,U(s))

=

For e> Osufficiently small. Since Iirrgu(t, €)=r(t)
m(t) <u(t,e), t=t, (1.1.3)

We observe that m(t,) <u(t, ) and

u(t,e) > u,(t) +t§:G(t, s,u(s,e))

t=t,
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We know, a) KeC[lxIxR_,R],k(t,s,x) is monotone nondecreasing in x for each

fixed (t,s) and one of the inequalities

t-1 -1
X(t) <h(t)+ > _k(t,s,x(s)) and y(t) = h(t)+ > K(t,s,y) is strict, where x, y,h e C[I,R]
t=t, s=t,

and X(t,) < y(t,) then x(t) < y(t), t>t,.
By applying this fact we obtain m(t) <u(t,e), t>t,
Theorem 1.1.2 Let keC[IxIxR_,R.], K(t,s,x)be monotonic nondecreasing in x for

each (t, s) and
t-1

X(t) < X, () + D _K(t,s,x(s)) 1.1.4
5=t

Where  x,x,€C[I,R,]. Assume that r(t) is the maximal solution of

t-1
u(t) =X, (t) + D_K(t,s,x(s)) 1.1.5
Existing on [t,, ) then
XA <r(t), txt, 1.16
Proof : Define F(t,s,Yy)=K(t,s,sup[y, x(t)]) 1.1.7
For any two element X,y € R, X<V ifand only if X <Yyfori=1234..n

If Ac R"then there exists a sup A with respective relation X<y, X, <,

sup{x,ylI=2=(z,,....... Zy) 1.1.8
Where Z; =max(X;, Y;) where Xi, Y;is component of x,y x(t) <sup[y, x(t)] and it follows
from the monotonicity of K and (1.1.7)
F(t,x,y) > K(t,s,x(t))foreachy ................ 1.1.9
Let r*(t) be the maximal solution of

t-1
u(t) = x, (t) +z F(t,s,u(s))

s=t,
existing on[t,,«) by applying (1.1.7) and (1.1.4) we obtain

-1 -1

F*(t) =X (t) + D F(L,5,1*(s)) = X, (t) + D _K(t,s, X(5)) = X(t) 1.1.10

s=to t=ty

From > X(t) 1.1.10 and (4.1.8) it is clear that. (4.1.10)
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sup[t* (), x(®)]=r*(t)
By (1.1.7)
F(t,x,r*@)=K(t,s,r*(t))

Therefore r*(t) is also the maximal solution of (1.1.5)

SX(@E) <)t >t
2. APPROXIMATE SOLUTIONS, BOUNDED AND UNIQUENESS
Definition 2.1.1.Let X € C[I,R, ]and satisfy
t-1
[IX(t) =% (t) = D_K(t, s, X(s)) [| < 5(t) (2.1.1)
t=t,
Where o € C[I,R,] then x(t) is said to be & — approximate

t-1
Solution of summation equation X(t) = X, (t) + Zk(t, s, X(9))

s=t
Theorem 5.1.1 Assume that
a) keC[IxIxR,R],GeC[lxIxR ,R]
G(t,s,u) is monotonic non decreasing in u for each (t, s) and
Ikt s, x)—k(t,s, y) [[<G(t,s,) | x=y| (21.2)
b) x(t,5) isa o —approximate solution of

X(t) = %, (t) +§k(t, s, X(s))where 6 €C[I,R,]

s=t,

c) r(t) is the maximal solution of (2.1.3)

u(t) =5(t)+ie(t,s,u(s))

s=ty
erxisting on [t,, )
Then , if y(t) is an solution of (2.1.3) existing on [t,, )
the|| x(t,8) — y(t) [I< r(t), t > t,
Proof : Consider the function
m(t) =l x(t,0) - y(1)
Where x(t,o)and y(t) are approximate solution and solution of (2.3.1) respectively then

using (2.1.1), (2.1.2) we obtain

m(t) =[| x(t, ) — X, (t) —tik(t, s, X(s,9))
st
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+tz_1:k(t, S, X(s,0)) —k(t,s, y(s)) [£ o(t) + tZ_l:G(t, s, m(s))

s=t s=t
Theorem 2.1.2. Assume thatK eC[IxIxR,,R,],GeC[l xIxR,,R,],G(t,s,u) is
monotonic non-decreasing in u for each (t,s) and || K(t,s, X) ||< G(t,s,|| X|])  (2.1.4)
a) r(t) is the maximal solution of (4.4.1) existing on [t,,x)
b) x(t) is any solution of (2.3.1) existing on such that || x, (t) ||< u, (t)
then || x(t) [I< r(t), t>t, (2.1.5)

Proof : Let m(t) =|| x(t) ||then the summation inequality
t-1

m(t) < % () [l + 21 K (E, 8, %) [1<Ug (1) + > G (t, 5, m(s))
s=t

By theorem 1.1.1 we obtain
1) [l r (D), t=1,
Theorem 2.1.3.Suppose that
a) k,k,eC[IxIxR,R]1GeC[IxIxR,,R,]G(ts,u)
is monotonic nondecreasing in u for each (t,s) and
1K, (65, %)~ ky (6,5, Y) K G(t,8,)(x~ ) | (2.1.6)
b) X, Y, €C[l,R,Jand x(t), y(t) are any two solution of

X(t) =x, + ti k. (t,s,x(s))

s=tg

t-1
y(t) =Y, + D K, (t,s, y(s)) respectively

5=ty
c) r(t) is the maximal solution of (5.4.1) such that
1% @) - Yo () li<r (), t =t
Proof : Firstly setting m(t) =[| x(t) ||and using (5.1.6)
We obtain

m(t) <[l X, (6) = Yo O thZII Ky (t,8,X(8)) =k, (1,3, y(5))

s=tg

suo(t)+tz_l:G(t,S,m(t))
s

From theorem 4.1 we get
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I x(®) - y@® [[<rt),t =1,
Theorem : 2.1.4 Assume thatK,,K, e C[I xI xR_,R.] and GeC[I xI xR ,R.], G(t,s,u)
IS monotonic non decreasing in u for each (t,s) and
I Ky (68, X) =K, (L8, y) < G, s, || x =y )

a) XY, €C[l,R,Jand x(t), y(t) are two solution of

X0 = %) + 3K, (4,5, %(5))

t=t,

y(t) =y, )+ tz_ll K, (t,s, X(s)) respectively
t=t

t-1
b) r(t) is the maximal solution of u(t) = uo(t)+ZG(t,s,u(s)) such that

t=t,

” Xo(t) - yo(t) ”S uo(t)’ t> to
under these assumptions we obtain
[Ix(®) - y(@) < r(t), t=t,

proof : Let m(t) <|| Xo(t)_yo(t)”—i_i” Ky(t, 8, %(5)) K, (L8, y(9))

s=t

< uO(t)++tZ_1:G(t,s, m(s))

s=ty
Theorem 2.1.5 Suppose that G € C{[t,,t, +a]x[t,,t, +a]xR,,R.},G(t,s,0) =0
a) G(t,s,u)is monotone non decreasing in u for each (ts,) and u(t)=0the only

solution of summation equation

u(t):tiG(t,s,u(s)) on [t,.t, +a] (5.1.4.1)

t=t,
b) K eC{[t, t,+alx[t,,t, +a]xR,,R,} and
| K(t,s, ) —K(t,s,y) <Gt s). ] x—-yl)
then there exists at most one solution of (2.1.3) on to
Proof : Let x(t), y(t) be two solution of (2.1.3) existing on [to,to+a]

Let m(t) 5| x(t)—y(t)|| then
m(t) < tZl:G(t, s,m(s))

By applying theorem 4.1 we obtain

25 International Journal of Engineering, Science and Mathematics
http://www.ijmra.us, Email: editorijmie@gmail.com




ISSN: 2320-0294LL Impact Factor: 6.765

m(t) <r(t),t>t,, t>t,

Where r(t) is the maximal solution (2.1.4.1) since m(t,)=0and is only solution of

(2.1.4.1) therefore there exists at most one solution of (2.1.3) onto t, <t <t,+a
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